Электрические колебания

В замкнутом контуре, содержащем заряженный конденсатор и катушку индуктивности, возникают электрические колебания. Они происходят следующим образом. Конденсатор начинает разряжаться, через катушку проходит ток, в ней создается магнитное поле и возникает электродвижущая сила самоиндукции. Электродвижущая сила самоиндукции поддерживает ток после того, как конденсатор полностью разрядится; это приводит к тому, что конденсатор вновь заряжается, но уже с полярностью пластин обратной исходной. Затем процесс повторяется, но ток в контуре имеет обратное направление. Таким образом, при электрических колебаниях в конденсаторе контура имеется переменное электрическое поле, а в катушке — переменное магнитное поле, которые взаимно переходят одно в другое посредством образующегося в контуре переменного тока.

Если частота переменного электрического и магнитного полей достаточно высока (в области сверхвысоких частот), то взаимный переход их может происходить непосредственно путем взаимной индукции в свободном пространстве.

Совокупность взаимно связанных и переходящих одно в другое высокочастотных электрического и магнитного полей называется электромагнитным полем. Электромагнитное поле, образующееся в колебательном контуре и называемое полем индукции, отличается тем, что его электрическая и магнитная составляющие связаны с элементами контура (емкостью и индуктивностью) и потому могут быть использованы в какой-то мере независимо одна от другой.

Электромагнитное поле, образовавшееся в свободном пространстве и называемое полем излучения, распространяется со скоростью света от источника по всем направлениям, образуя электромагнитную волну.

В электромагнитной волне электрическая и магнитная составляющие могут быть разделены только условно. Источником электромагнитных волн является колебательный контур генератора, снабженный излучателем волн — антенной.

Электрические колебания используют для лечебных целей: а) при общей дарсонвализации (см.), когда воздействие осуществляется высокочастотным импульсным электромагнитным полем, образуемым при определенных условиях в соленоиде колебательного контура аппарата, внутри которого помещается больной; б) при индуктотермии (см.), когда воздействие производится преимущественно магнитным полем, образуемым с помощью спирали, обтекаемой высокочастотным током и наложенной на область тела больного, подлежащую воздействию; в) при терапии нолем УВЧ, при которой воздействие осуществляется электрическим полем, образующимся между пластинами конденсатора, подключенного к колебательному контуру аппарата; между ними помещается область тела больного, подлежащая воздействию.

Первичное действие на ткани организма высокочастотного магнитного поля связано главным образом с образованием в тканях-проводниках вихревых токов, что при достаточной их мощности дает тепловой эффект.

Высокочастотное электрическое поле в тканях-проводниках вызывает колебательное движение ионов (ток проводимости), в тканях-диэлектриках происходят поляризационные явления (основное значение имеет ориентационная поляризация, в результате которой в связи с переменным характером поля молекулы совершают вращательные колебания — осцилляции, сопровождающиеся как тепловым эффектом, так и более глубокими структурно-химическими изменениями в тканях).

Первичное действие электромагнитного поля на ткани организма соответствует совместному действию его электрической и магнитной составляющих.

Электромагнитные волны характеризуются частотой колебаний или длиной волны. Длина волны — это расстояние, на которое она распространяется за один период колебаний ее электрической или магнитной составляющей. Различные по длине волны по-разному действуют на ткани организма. Среди радиоволн различают длинные, средние, короткие и ультракороткие (см. таблицу).

Название волны Длина волны Частота Название частоты
Длинные (ДВ) 10 000—1000 м 30—300 кГц Высокая (ВЧ)
Средние (СВ) 1000—100 м 0,3—3 МГц
Короткие (KB) 100—10 м 3—30 МГц
Ультракороткие (УКВ) Метровые 10—1 м 30—300 МГц Ультравысокая (УВЧ)
Дециметровые 1—0,1 м 300—3000 МГц Сверхвысокая (СВЧ)
Сантиметровые 10—1 см 3—30 ГГц
Миллиметровые 10—1 мм 30—300 ГГц

Для лечебных целей (микроволновая терапия) используют волны дециметрового и сантиметрового диапазонов. Облучение участка поверхности тела больного осуществляется направленным потоком волн от излучателя при помощи специальных рефлекторов или волноводов.

Первичное действие микроволн на ткани организма — это действие электромагнитного поля сверхвысокой частоты; в основном оно заключается в колебаниях ионов и других заряженных частиц, имеющихся в тканях-проводниках, а также в осцилляциях дипольных молекул в тканях-диэлектриках.

Особенностью действия микроволн является поглощение их в поверхностно расположенных слоях тканей; особое значение приобретают при этих частотах диэлектрические свойства воды (см. Электролечение).